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1 Introduction

Over the past decade, the AdS/CFT correspondence [1, 2] has been developed to pro-

vide a powerful tool to investigate the thermal and hydrodynamic properties for certain

strongly coupled gauge theories [3]. At the same time, recent experimental results from

the Relativistic Heavy Ion Collider (RHIC) have revealed a new phase of nuclear matter,

known as the strongly coupled quark-gluon plasma (sQGP) [4]. Recently, there has been

great interest in possible connections between these two advances, in particular, using the

AdS/CFT to gain theoretical insight into the sQGP [5]. The primary motivation for this

possible connection is the observation that a wide variety of holographic theories exhibit

an exceptionally low ratio of shear viscosity to entropy density η/s = 1/4π while the RHIC

data seems to indicate that this ratio is unusually small for the sQGP and even seems yield

roughly η/s ∼ 1/4π [6].
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Motivated by the results from the AdS/CFT correspondence, Kovtun, Son and

Starinets (KSS) proposed a now celebrated bound for the viscosity-to-entropy-density ra-

tio [7]. That is, for all fluids in nature the ratio η/s is bounded from below:

η

s
≥ ~

4πkB

. (1.1)

This bound certainly appears to be satisfied by all common substances observed in na-

ture [8]. Using the AdS/CFT correspondence, the bound has been shown to be saturated

in all gauge theories in the planar limit and at infinite ’t Hooft coupling (with various gauge

groups, matter content, with or without chemical potentials for conserved U(1) charges,

with non-commutative spatial directions, in external background fields) that allow for a

dual supergravity description [8–17]. The bound is not saturated but it is still satisfied in

all four-dimensional1 conformal gauge theories with equal a and c central charges, again

allowing for a string theory dual and in the planar limit and with large but finite ’t Hooft

coupling [19, 20].

One may ask if the KSS bound (1.1) is indeed of fundamental importance to nature?

However, the answer appears to be “no”. It was pointed out by [21] that the bound is

violated in a nonrelativistic gas with increasing number of species and by [22–24], that

it can be violated in effective theories of higher derivative gravity. Of course, the true

question is whether or not the violation occurs in quantum field theories that allow for a

consistent ultraviolet completion [25]. In fact, Kats and Petrov [24] proposed an explicit

example of a gauge theory/string theory duality where a violation of the KSS bound occurs

in a controllable setting — see also [26]. However, one may easily draw into question the

veracity of this claim.

In particular, the calculations in [24] were presented in terms of an effective five-

dimensional gravity theory. However, the proposed duality is between a gauge theory and a

ten-dimensional string theory. Thus, it seems the gravity calculations should be performed

within the full ten-dimensional string theory background constructed to required order

in α′. Alternatively, beginning with the ten-dimensional background, one could carefully

perform the Kaluza-Klein reduction but this would require keeping track of all of the fields

and their interactions in the effective five-dimensional theory. For instance, the reduction

may produce scalar fields which it seems are likely to effect the calculations at the order

to which they must be performed to detect the potential violation of the viscosity bound.

Our primary motivation for the present work was to examine in detail the claimed

violation of the viscosity bound (1.1) in [24]. In fact, we are able to sharpen the arguments

in terms of an effective five-dimensional gravity dual and confirm that the KSS bound will

be violated as long as the central charges of the conformal gauge theory satisfy a number

of conditions: c ∼ a ≫ 1 and |c − a|/c ≪ 1 are required to guarantee the reliability of the

low energy effective action and then the inequality

c − a > 0 , (1.2)

1Preliminary analysis indicates that the bound is satisfied under the same conditions in three-dimensional

conformal gauge theories [18].
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produces a violation of the KSS bound [22, 24].

An outline of the paper is as follows: In section 2, we examine in detail when an

effective five-dimensional gravity dual yields a reliable description of the superconformal

gauge theory. In section 3 we compute (c − a) in variety four-dimensional superconfor-

mal gauge theories. This produces new examples where we can reliably state that the

KSS bound is violated. Given these observations, we consider the comparison of results

from AdS/CFT calculations to the sQGP in section 4. Finally, we provide a concluding

discussion in section 5. Appendix A elaborates on the discussion of field redefinitions in

the presence of other bulk fields, while appendix B provides an explicit realization of our

effective AdS/CFT duality in a stringy context where ten-dimensional supergravity plus

probe branes is a reliable approximation.

2 Effective description of conformal gauge theory/string theory duality

According to the AdS/CFT correspondence [2], any four-dimensional superconformal gauge

theory will have a dual description in terms of quantum gravity with a negative cosmologi-

cal constant in five dimensions. Now for particular cases where it is sensible to consider the

conformal gauge theory with large-Nc and strong coupling, our intuition is that the dual

description is well approximated by Einstein gravity in a five-dimensional AdS spacetime.

In this framework, higher curvature (or more broadly higher derivative) interactions are

expected to arise on general grounds, e.g., as quantum or stringy corrections to the clas-

sical action. Hence a more refined description will be given by an effective action where

the cosmological constant and Einstein terms are supplemented by such higher curvature

corrections. Here we consider when such an effective action approach yields a reliable

description of the superconformal gauge theory.

A key assumption in our discussion will be that:

The effective five-dimensional gravity theory is described by a sensible derivative ex-

pansion. That is, we expect that the higher curvature terms are systematically suppressed

by powers of the Planck length, ℓP.

Hence we can expect the effective gravity action in five dimensions to leading order to take

the form

I =
1

2ℓ3
P

∫

d5x
√−g

[

12

L̃2
+ R + L̃2

(

α̃1R
2 + α̃2RabR

ab + α̃3RabcdR
abcd
)

+ · · ·
]

, (2.1)

where the scale L̃ will correspond to the AdS curvature scale, at leading order, and we as-

sume that L̃ ≫ ℓP. We have parameterized the curvature squared couplings with the AdS

curvature scale, as is convenient for explicit calculations, but we expect that the dimen-

sionless couplings αi ∼ ℓ2
P/L̃2 ≪ 1 in accord with our assumption of a sensible derivative

expansion. Further, compared to these interactions, the six- and higher derivative terms,

which have been left implicit, are suppressed by further powers of ℓ2
P
/L̃2. For example, an

interaction of the form λ L̃4 R RabcdR
abcd would have λ ∼ ℓ4

P
/L̃4 ≪ α̃i.
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At this point, we note that we can simplify the form of the action by making a field

redefinition gab → gab + δgab with [22, 24]

δgab =
8

3
(5α1 + α2) gab + α2 L̃2Rab −

1

3
(2α1 + α2) L̃2R gab , (2.2)

which then simplifies the action to

I =
1

2ℓ3
P

∫

d5x
√−g

[

12

L2
+ R + α3L

2RabcdR
abcd + · · ·

]

. (2.3)

The implicit terms implied by the ellipsis all contain six or more derivatives suppressed

by at least ℓ4
P
/L̃4, as described above. Hence, the field redefinition (2.2) has succeeded in

eliminating the R2 and RabR
ab terms.2 This makes clear that, at this order, the gravity

action contains two and only two dimensionless small parameters: ℓP/L and α3.

We return to this point after making a number of observations: first, given the effective

action (2.3), we might consider making a further field redefinition of the form

δgab = λ1 L4 RacdeRb
cde + λ2 L4 gab RcdefRcdef , (2.4)

which would modify the action by adding terms of the form

δI =
1

2ℓ3
P

∫

d5x
√−g

[

6L2(λ1 + 5λ2)RabcdR
abcd (2.5)

−L4 λ1 RabRacdeRb
cde +

L4

2
(λ1 + 3λ2)RRabcdR

abcd

]

.

Hence, given the first term above, it would seem that we can use these field redefinitions

to remove the α3 term in (2.3). Note that the latter would require that λ1,2 ∼ ℓ2
P/L2

and hence the six-derivative terms, appearing in the second line of (2.5), would only be

suppressed by this same factor ℓ2
P
/L2. However, our assumption is that the derivative

expansion organizes the effective action so that any such term is suppressed by a factor of

ℓ4
P/L4. Hence if we wish to maintain this structure, then we must require that λ1,2 ∼ ℓ4

P/L4

and so this field redefinition could only make higher order corrections to α3.

Next, we observe that with the original field redefinitions (2.2), Newton’s constant

(i.e., the coefficient of the Einstein term) has been kept fixed but the curvature scale L has

to be redefined as

L2 = L̃2

(

1 − 20

3
(5α̃1 + α̃2) + · · ·

)

. (2.6)

In principle, the coupling α̃3 was also corrected with α3 = α̃3 + O(α̃2
1, α̃

2
2, α̃1α̃2). However,

we do not specify the latter in detail, as it actually requires specifying the field redefini-

tion (2.2) more precisely, i.e., to order α̃2
i . But these expressions do illustrate the point

that in general the parameters in this effective action (2.3) may be complicated functions

of the microscopic parameters of the quantum gravity theory. For example, in a string

2Of course, the coefficients of these two interactions could be tuned to any convenient values. For

example, this would allow us to assemble the curvature-squared terms to be the square of Weyl-curvature

or the Gauss-Bonnet term [22], either of which may be advantageous for certain calculations.
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or M-theory framework, they would arise upon the Kaluza-Klein compactification of the

higher dimensional geometry and these low energy parameters would depend on all of the

details for the compactification. In general, we would also expect that these parameters

also receive quantum ‘corrections’, which might in turn include both perturbative and

nonperturbative contributions.

Note, however, that the dual theory is assumed to be dual to a four-dimensional

conformal field theory. Hence at any order in the derivative expansion, the gravity theory

admits a five-dimensional anti-de Sitter vacuum, although the precise characteristics, i.e.,

curvature, of the latter may change as we increase the accuracy of our calculations. Given

the action (2.3), the curvature of the AdS space is:

L̂2 = L2

(

1 − 2

3
α3 + · · ·

)

. (2.7)

Again, this curvature is dependent on the microscopic details of the quantum gravity theory.

The key observation, which we review here, is that the two dimensionless parameters

identified above are simply related to parameters characterizing the dual CFT. First, we

recall that the conformal anomaly of a four-dimensional CFT can be identified by putting

the theory in a curved spacetime and observing [27]

〈T µ
µ〉CFT =

c

16π2
I4 −

a

16π2
E4 . (2.8)

Here c and a are the two central charges of the CFT and E4 and I4 correspond to the four-

dimensional Euler density and the square of the Weyl curvature, respectively. Explicitly,

E4 = RµνρλRµνρλ − 4RµνRµν + R2 , I4 = RµνρλRµνρλ − 2RµνRµν +
1

3
R2 . (2.9)

Holographic techniques allow precisely the same expression to be calculated with the re-

sult [28–30],

〈T µ
µ〉holo = − L̂3

16ℓ3
P

(E4 − I4) +
L̂ L2

4ℓ3
P

α3 (E4 + I4) , (2.10)

Hence comparing (2.8) and (2.10), we arrive at

L3

ℓ3
P

≃ c

π2

(

1 − 3

8

c − a

c

)

, α3 ≃ 1

8

c − a

c
. (2.11)

In these expressions, we have used our assumption of a sensible derivative expansion, which

dictates that α3 ≪ 1.

One conclusion then is that if we require the quantum gravity theory is described by a

low energy action with sensible derivative expansion, we are restricted to consider CFT’s

for which

c ∼ a ≫ 1 and |c − a|/c ≪ 1 . (2.12)

Further, the effective action is expected to contain further higher curvature terms and

the dimensionless coefficients appearing in these interactions would be related to new pa-

rameters characterizing the CFT — for example, see [31]. Our assumption of a sensible

– 5 –
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derivative expansion then restricts the size of these parameters, i.e., the CFT’s of interest

should have these parameters being proportional to inverse powers of the central charge c.

Above, we observed that the AdS/CFT correspondence dictates the values of the lead-

ing parameters in the effective gravity action terms of the central charges of the dual

CFT according to (2.11). Hence if the central charges of the CFT are known (and the

inequalities (2.12) are satisfied), we can be confident of the precise form of this effective

action (2.3) to leading order, even if we do not understand the microscopic details under-

lying the quantum gravity theory. Then if we are careful to respect the limitations of the

derivative expansion, we can work reliably with the gravity action (2.3) to determine the

properties of the CFT using the standard AdS/CFT correspondence. Note that only the

dimensionless ratios in (2.11), but not the Planck length ℓP, appear in any physical results

for the CFT. Of course, this is in accord with the fact that for a supersymmetric CFT,

supersymmetry combines with diffeomorphism and conformal invariance to completely dic-

tate the form of the two- and three-point correlators of the stress-energy tensor in terms

of these two central charges, a and c [33]. Hence while we can reproduce these correlators

with the dual gravity action (2.3), the latter also allows us to calculate more interesting

properties, such as thermal transport coefficients of the CFT. One interesting example is

the shear viscosity [22, 24]
η

s
=

1

4π
(1 − δ + · · · ) , (2.13)

where we have introduced

δ ≡ c − a

c
= 8α3 + · · · . (2.14)

Hence the sign of δ in the CFT or of the RabcdR
abcd term in effective gravity action deter-

mines whether or not the viscosity bound (1.1) is respected or violated at this order. In

particular, the bound is violated if c > a.

Of course, according to the standard AdS/CFT dictionary, the metric is dual to the

stress-energy tensor of the CFT and so with the gravity action (2.3), we are restricted to

study the properties of this one operator. In general, we should expect the full CFT will

have a spectrum of interesting operators, possibly including a variety of relevant, irrelevant

and marginal operators. The latter would then be dual to other fields which may also

play an interesting role in the gravity theory. Hence our preceding conclusions may seem

somewhat naive since we have restricted the discussion to the pure gravity sector of the

theory. Therefore we must show that such operators do not effect our conclusions.

As an example, consider the case where the gravity theory that contains a number of

scalars φk. As above, we assume that the effective gravity theory is described by a sensible

derivative expansion. In principle, a large number of four-derivative terms could appear

in the effective action but as described in appendix A, field redefinitions can be used to

greatly simplify the action. The final action can be written as

I =
1

2ℓ3
P

∫

d5x
√−g

[

U (φm) + R −Kij(φ
m)∇φi · ∇φj (2.15)

+A3 (φm) RabcdR
abcd + B (φm,∇aφ

m,∇a∇bφ
m) + · · ·

]

.

– 6 –
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While more details are provided in the appendix, B combines the remaining four-derivative

interactions which explicitly contain derivatives of the scalar fields. An important point is

that all of these interactions contain at least two factors of scalar derivatives. Then, since

we are treating these terms perturbatively within the derivative expansion and the scalars

will be constant in the leading solutions of interest, they remain constant at the next order.

Hence we may ignore these terms for the remainder of the discussion.

In describing the rest of the terms in (2.15), we should begin by saying that we have

adopted the convenient (supergravity) convention where the scalar fields φi are dimension-

less. Below, we argue that the scalars vanish in the AdS5 vacuum and so we may assume

that all of the expressions in the action are nonsingular at φi = 0. Hence we can express

each of the coefficient functions in terms of a Taylor series:

U (φm) =
12

L2

(

1 + uiφ
i + uijφ

iφj + uijkφ
iφjφk + · · ·

)

, (2.16)

Kij (φm) = kij + kijkφ
k + kijklφ

kφl + kijklmφkφlφm + · · · , (2.17)

A (φm) = L2
(

α3 + aiφ
i + aijφ

iφj + aijkφ
iφjφk + · · ·

)

. (2.18)

Now in keeping with our assumption of the derivative expansion above, a second key

assumption here is that:

All of the coupling coefficients in each of (2.16), (2.17) and (2.18) above are of the same

order (with the exception of ui).

That is, all of the couplings uij··· in (2.16) and kijk··· in (2.17) may be of order one (or

higher order in ℓ2
P
/L2), with the exception of ui – which we address below. Similarly,

α3 and all of the subsequent couplings aij··· in (2.18) are assumed to be of order ℓ2
P
/L2

(or higher). Of course, each of these couplings may in general be a complicated function

of ℓ2
P/L2 and so here we are demanding that α3 and aij··· do not have order one (or

order ℓP/L) contributions. Within this framework, the corresponding scalar masses are

of the order of the AdS curvature scale, i.e., m2
k ∼ 1/L2. Hence each of the dual scalar

operators Ok has a conformal dimension of order one. These operators may be relevant,

irrelevant or marginal. An exactly marginal operator is an exceptional case, which will

receive detailed consideration below. As before, the ellipsis in (2.15) corresponds to six-

and higher derivative terms which implicitly are suppressed at least by couplings of order

ℓ4
P
/L4, as in the previous discussion.

The dual theory is a conformal field theory, which again implies that at any order in

the derivative expansion, the gravity theory (2.15) admits an AdS5 vacuum. Further, in

the conformal vacuum, the expectation value of any of the operators must vanish, i.e.,

〈Ok〉0 = 0 , as well as 〈Tµν〉0 = 0 . (2.19)

This property is reflected in the gravity theory with the vanishing of the dual scalar fields in

the AdS5 vacuum. A possible exception to this conclusion arises with an exactly marginal

operator. In principle, the corresponding massless scalar in the dual gravity theory can

take on any constant value. However, we will define this expectation value of the scalar

field to be zero for the vacuum that we are studying here.

– 7 –
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Let us now turn to the special case of the exceptional couplings ui. For the AdS5 space

to be a solution with φi = 0 at leading order in the derivative expansion, i.e., dropping

the curvature-squared and higher order terms, it must be true that ui = 0 at this order.

However, when curvature-squared term is included, the scalar equations of motion yield

[

δU
δφi

+
δA
δφi

RabcdR
abcd

]

φk=0

=
12

L2
ui + L2 ai

40

L4
= 0 . (2.20)

assuming an AdS5 background with vanishing scalars. Hence we find that consistency

demands that the scalar potential contains linear couplings of order ℓ2
P
/L2:

ui = −10

3
ai . (2.21)

An alternate interpretation would be that if we set ui = 0 then the AdS5 solution is stable

to leading order but in general the appearance of the curvature-squared term will then

cause the scalars to acquire an expectation value of order ℓ2
P/L2 in the vacuum. We are

simply redefining the scalars to absorb this constant shift in our approach.3

Although the scalars vanish in the AdS5 vacuum, one can expect that the curvature-

squared term will source the various scalar fields in more general backgrounds. However,

one would still have that φk ∼ ak ∼ ℓ2
P/L2 in such a background. We must consider

two particular examples in our discussion. The first relevant example would be a black

hole background and this effect implies that in a thermal bath the dual operators acquire

expectation values 〈Ok〉 ∼ ak. The second relevant case comes from the holographic

calculation of the conformal anomaly (2.10). While the precise background is typically

not specified in these calculations, implicitly, one must be working with more general

backgrounds where, in particular, the Weyl curvature is nonvanishing. Hence we must

argue that even though the scalars may have nontrivial profile at order ℓ2
P
/L2, this will not

affect the holographic calculations of the conformal anomaly or the thermal behaviour of

the CFT. With a careful consideration below, we will show that the nontrivial scalars can

only modify the results at order ℓ4
P/L4. Our general argument was originally formulated

in a slightly different context in [11].

As an explicit example, let us consider the calculation of shear viscosity [3, 34, 35].

A key step would be calculating the effective quadratic action for the various graviton

fluctuations, i.e., the shear, sound and transverse modes, in the black hole background.

The nontrivial scalars can effect these modes in two ways. First they explicitly appear

in the action. However, contributions of terms quadratic or higher powers in φi would

be suppressed by ℓ4
P
/L4 or higher powers. There are two possible sets of linear terms in

U(φm) and in A(φm) but, as discussed above, the couplings for both of these are already

3An alternate approach would be to use the freedom of field redefinitions so that the square of the

Weyl tensor, rather than of the Riemann tensor, appears in the effective action (2.15). Then because the

AdS vacuum has vanishing Weyl curvature, the scalar equations of motion would be unaffected by the

curvature-squared term and ui would remain zero at this order. Note that in this approach, the AdS

curvature would also match precisely the scale L appearing in the action. However, the additional RabR
ab

and R2 interactions, appearing in the Weyl-curvature squared, would modify the holographic anomaly (2.10)

in precisely such a way to reproduce the same expressions as in (2.11).

– 8 –
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order ℓ2
P/L2 and so they only contribute with an overall factor of ℓ4

P/L4. Secondly, the

nontrivial scalars will modify the background geometry through Einstein’s equations, but

similar reasoning shows that the modifications of the metric would again be order ℓ4
P
/L4.

Hence, even though the scalars themselves appear at order ℓ2
P/L2, their effect is only felt by

the graviton modes at order ℓ4
P/L4. Hence the calculation of η/s can be reliably made at

order ℓ2
P/L2 while ignoring all of the scalar fields, i.e., with the effective gravity action (2.3).

The same general argument applies to calculations of other thermal properties from the

black hole background or of the holographic conformal anomaly.

Next, we make a few comments on the extension of our discussion to include vectors

in the gravity theory — see also appendix A. If we consider some number of Abelian

gauge fields, the vectors are dual to conserved currents and the corresponding U(1) gauge

symmetries are identified with global symmetries in the CFT [2]. A complete discussion of

the contributions of these gauge fields to the four-derivative gravitational action would be

quite lengthy and equally tedious and so we only remark on salient points. First, we restrict

the discussion to having only constant gauge fields at leading order in the background. That

is, we are only considering the case of vanishing chemical potentials. Next, it is relatively

easy to show that the majority (i.e., all but one) of the new four-derivative interactions are

at least quadratic in the field strengths of these gauge fields. Hence an argument similar to

that below (2.15) applies here as well, with the conclusion that these terms are irrelevant

at this order, as long as we are considering backgrounds where the vectors are constant.

However, given a set of U(1) gauge fields Ai
a, there is one four-derivative coupling which

cannot be dismissed by this argument, namely,

I ′ =
1

2ℓ3
P

∫

L2 di A
i ∧ Ra

b ∧ Rb
a . (2.22)

In keeping with the derivative expansion, these terms, which are linear in the gauge fields,

are characterized by a set of dimensionless constants di ∼ ℓ2
P
/L2. Note that we require that

under local gauge transformations, I ′ only produces a surface term and so even if the gravity

theory contains scalars, we cannot replace the constants di by general functions Di(φ
m).

An interaction of this form plays an interesting role in describing the anomaly for the

U(1)R current in supersymmetric CFT’s [36, 37]. In fact, in the context of N = 2 gauged

supergravity, supersymmetry connects this interaction (2.22) to an RabcdR
abcd term [38, 39].

Since this interaction is linear in the gauge potential, it will induce a nontrivial profile in

a background where Ra
b ∧ Rb

a is nonvanishing. However, this combination of curvatures

vanishes both for the AdS5 vacuum and an AdS5 black hole background and so no profile is

induced for these backgrounds. Of course, this result is in keeping with the intuition that

a finite charge density is not induced by introducing a finite temperature alone. We should

also consider the nontrivial backgrounds implicit in calculating the holographic conformal

anomaly (2.10). In general, we expect that a nontrivial profile can be induced for the

gauge potentials in this case but we would still only find that Ak ∼ dk ∼ ℓ2
P/L2 in such

a background. Hence following arguments analogous to those presented to dismiss the

effect of nontrivial scalar profiles, we would again find that the nontrivial gauge potentials

can only modify the anomaly calculation at order ℓ4
P
/L4. Therefore the calculations of
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both the thermal properties and of the conformal anomaly would remain unaffected by

the appearance of additional vector fields. Hence our conclusion once again is that these

calculations can be reliably made at order ℓ2
P
/L2 with the effective gravity action (2.3),

while ignoring any matter fields in the gravitational theory.4

In closing this section, we return to the special case of an exactly marginal (scalar)

operator. As already mentioned above, the dual scalar field φM is precisely massless and

so it can in principle be set to any arbitrary value in the AdS5 vacuum. This property

implies special relations between the couplings for φM in the effective action (2.15), i.e.,
(

δ

δφM

)n [

U(φk) + A(φk)
40

L4

]∣

∣

∣

∣

φk=0

= 0 , (2.23)

where 40/L4 corresponds to RabcdR
abcd in AdS5, as in (2.20). Unfortunately, these relations

make the discussion somewhat more complicated than necessary. So instead, we make a

field redefinition such that the effective action (2.15) takes the form

I =
1

2ℓ3
P

∫

d5x
√−g

[

Ũ (φm) + R − K̃ij(φ
m)∇φi · ∇φj + Ã3 (φm) CabcdC

abcd + · · ·
]

,

(2.24)

where Cabcd is the Weyl curvature in five dimensions. Since the Weyl curvature vanishes

in the AdS5 vacuum, the only restriction is that the scalar potential Ũ (φm) is completely

independent of φM . Note, however, that in general Ã3 (φm) remains a function of φM

without any restrictions. Hence, even though the couplings in Ã3 are naturally of order

ℓ2
P
/L2 as in (2.18), this suppression could be overcome if the massless scalar has a very

large expectation value, i.e., Ã3 ∼ O(1) for large φM . More generally, since φM can become

arbitrarily large, it can produce effective coupling coefficients for the higher derivative terms

which are not suppressed as we initially assumed. Hence, our assumption of a sensible

derivative expansion will implicitly restrict us to a limited region of the parameter space.

Of course, it is generally expected that a CFT with exactly marginal operators will be

an exceptional case and in the absence of exactly marginal operators, these considerations

are not required. However, this issue naturally arises in many string realizations of the

AdS/CFT correspondence where the dilaton, i.e., the string coupling, is dual to an exactly

marginal operator.

In particular, this is the case for the string theory construction which Kats and

Petrov [24] suggested produces a violation the KSS viscosity bound (1.1). In this con-

text, the gravitational theory is Type IIb string theory on a AdS5 × S5/Z2 background,

which can be viewed as the decoupling limit of Nc D3-branes overlapping with a coinci-

dent collection of four D7-branes and an O7-brane [40]. The dual CFT is four-dimensional

N = 2 Sp(Nc) super-Yang-Mills coupled to 4 hypermultiplets in the fundamental repre-

sentation and 1 hypermultiplet in the antisymmetric representation. The central charges

for this gauge theory are [42]:

c =
N2

c

2
+

3 Nc

4
− 1

12
, a =

N2
c

2
+

Nc

2
− 1

24
. (2.25)

4Of course, the interesting question of corrections in the presence of a chemical potential would require

a detailed analysis of the higher order gauge field interactions.
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Now for large (but finite) Nc, the central charges satisfy both of the inequalities in (2.12)

and so it seems that we can confidently apply the results calculated from the five-

dimensional effective action (2.3) with the gravitational couplings fixed by (2.11). Further,

as noted by [24], c > a and so the shear viscosity (2.13) is

η

s
=

1

4π

(

1 − 1

2Nc
+ · · ·

)

, (2.26)

which violates KSS bound (1.1).

However, before accepting this result, we must first consider that in this construction,

the string coupling gs remains a free parameter. That is, this corresponds to the case of

an exactly marginal operator which is dual to the dilaton. As usual then, the results for

the CFT can be considered in a double expansion in both inverse powers of Nc and of the

’t Hooft coupling λ. Alternatively, we can think that the corrections to effective gravity

action are governed by two independent scales: the Planck length ℓP and the string length

ℓs. Hence, we must make sure that the higher curvature corrections beyond those explicitly

shown in (2.3) are sufficiently suppressed according to the assumed derivative expansion.

As we discuss in section 4, there will be no curvature cubed interaction. There is a universal

term quartic in curvatures which appears in any (closed) superstring theory [41]. It is known

that this term corrects the ratio of viscosity-to-entropy-density at O(λ−3/2) [10, 19, 43].

Hence as noted in [24], in order for the correction in (2.26) to dominate, we must have

1

Nc
≫ λ−3/2 ⇒ λ ≫ N2/3

c . (2.27)

The full correction to η/s from the R4 term also contains a contribution at O(λ1/2/N2
c ),

as well as various nonperturbative corrections [11, 20]. While the latter play no role in

the present discussion, formally requiring the first correction to be subdominant yields

λ1/2 ≪ Nc. While the previous interaction can be associated with the closed string sector,

one might also ask if the calculations could be significantly effected by R4 interactions

induced by the branes. As explained in appendix B, such higher curvature terms will be

subdominant in the derivative expansion. In particular, a D7-brane induced R4 term would

be accompanied by an additional suppression factor of gsV3ℓ
2
s/V5. In the present case with

V3 ∼ L3 and V5 ∼ L3, such an R4 interaction would only contribute corrections at order

1/(λNc). The final conclusion is that the Kats and Petrov result (2.26) calculated with a

five-dimensional effective action (2.3) is reliable within in a certain parameter regime (2.27)

and that we have at least limited violations of the KSS bound (1.1) in string theory.

In the above string theory example, the curvature-squared term can be associated

with the world-volume action of the D7-branes [37, 42]. In appendix B, we have added a

discussion which provides a schematic understanding of the origin of this term.

Note the requirement (2.27) is compatible with conventional restrictions implicit in

considering the classical gravity limit of the AdS/CFT correspondence in string theory.

That is, we have 1 ≪ λ ≪ Nc from requiring ℓ2
s/L

2 ≪ 1 to minimize stringy contributions

in the derivative expansion and gs ≪ 1 to minimizes string loop contributions. While the

derivative expansion, and hence λ ≫ 1, is central to the present effective action approach,
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there is no need to give a separate account of loop contributions. That is, using the five-

dimensional effective action (2.3) did not require a detailed understanding of the underlying

microscopic origin of each of the couplings in the full quantum gravity theory. Rather

we advocated that if the CFT central charges were given, we could use the AdS/CFT

dictionary to fix the gravitational couplings according to (2.11). Of course, consistency

also required that these central charges satisfy the inequalities given in (2.12). With this

approach, there is no reason that we could not consider the above or other string theory

constructions where the string coupling is strong, i.e., gs ∼ 1, which implies that λ ∼ Nc

or ℓs ∼ ℓP. In particular, we can apply this approach to evaluate the thermal behaviour of

CFT’s holographically described by the F-theory constructions of [42]. The case considered

by Kats and Petrov corresponds to one of these constructions and in fact, it is the only

case with a marginal coupling. In the remaining cases, there are no marginal couplings and

the string coupling is pinned at gs ∼ 1. Further, as discussed in the following section, with

large (but finite) Nc, the central charges again satisfy the inequalities in (2.12) and so the

shear viscosity (2.13) yields new violations of the KSS bound (1.1) since c > a in each of

these cases.

3 (c − a) in superconformal gauge theories

From the results of the previous section, we can conclude that if the central charges of a four-

dimensional superconformal gauge theory satisfy the two inequalities in (2.12), then we can

reliably describe the theory with a gravity dual with a five-dimensional effective action (2.3)

in which the gravitational couplings fixed by (2.11). Further, the shear viscosity is given

by (2.13) and the superconformal theory will violate the KSS bound (1.1) provided that

δ =
c − a

c
> 0 . (3.1)

Hence in this section, we explore the central charges of superconformal gauge theories based

on simple Lie groups with various matter fields. We only consider the gauge group G to

be a classical Lie group since we wish to take a large-Nc limit so that the first inequality

in (2.12) will be satisfied. We discuss two sets of theories, first those in which the gauge

coupling is an exactly marginal operator and secondly models defined as isolated SCFTs.

The gauge theories under consideration have either N = 2 or N = 1 supersymmetry in

four dimensions; some of them have a known string theory dual while others do not (at

this stage). Quite surprisingly, we find that in all of these models δ ≥ 0, which would seem

to indicate a violation of the KSS bound (1.1). However, generically, δ ∼ 1 as Nc → ∞
and so the second inequality in (2.12) is not satisfied. Therefore those theories do not

have a gravity dual with a controllable derivative expansion, which is required for (2.13)

to be valid. A similar analysis was carried out by Yuji Tachikawa and Brian Wecht [44].

Recently, [45] presented a complementary analysis of super-QCD with various relevant

superpotentials. Related calculations also appear in [46].

A superconformal gauge theory has an anomaly free global U(1)R symmetry. The

central charges, a and c, are relatively easy to determine as they are related to gravitational
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anomalies in this global symmetry. Consider a superconformal gauge theory with a gauge

group G and matter multiplets in representations {Ri}. Let ri denote the R-charges of the

matter chiral multiplets5 in the representation Ri. It was found in [47] that

c − a = − 1

16

(

dimG +
∑

i

(dimRi) (ri − 1)

)

,

c =
1

32

(

4 (dimG) +
∑

i

(dimRi) (1 − ri)
(

5 − 9(1 − ri)
2
)

)

.

(3.2)

Thus computation of δ reduces to the identification of the anomaly-free U(1)R symmetry of

the gauge theory at a superconformal fixed point. Our approach to this question depends

whether the gauge coupling is marginal or the theory is at an isolated fixed point.

3.1 Superconformal gauge theories with exactly marginal gauge coupling

Let us begin with the identification of the anomaly-free U(1)R symmetry for the case where

the gauge coupling is exactly marginal. Resolving this question is straightforward in this

case as it can be shown a U(1)R symmetry with classical assignment of the R-charges is

anomaly free, given the vanishing of the one-loop perturbative β-function. Consider classi-

cal assignment of R-charges, i.e., all matter superfields have ri = 2
3 and a vector superfield

has radj = 1. The superconformal algebra then implies that anomalous dimensions of chi-

ral superfields (χsf) must vanish. That is, the vanishing of the NSVZ exact perturbative

β-function, which is equivalent for zero anomalous dimensions to vanishing of one-loop

perturbative β-function,

0 = βN=1(g) ∝





3

2
T(adj) − 1

2

∑

i∈χsf

T(Ri)



 , (3.3)

guarantees that the classical R-charge assignment is in fact anomaly-free:

〈∂µjµ
R〉 ∝

(

radj T(adj) +
∑

i∈χsf

(ri − 1) T(Ri)

)

=

(

T(adj) − 1

3

∑

i∈χsf

T(Ri)

)

∝ βN=1(g) = 0 .

(3.4)

In these expressions, T(adj) and T(Ri) are group indices of the adjoint representation and

a χsf representation Ri in G, e.g., see [48] for explicit values. We only consider non-chiral

theories in the following.

3.1.1 SU(Nc)

Since T(adj) = 2Nc, to satisfy the vanishing of β-function as Nc → ∞, we can consider

(besides adjoint) only fundamental, symmetric and antisymmetric representations for the

χsf — any other representation has an index growing at least as O(N2
c ) as Nc → ∞.

5We use N = 1 susy representations to describe theories with extended supersymmetry as well.
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Suppose we have nadj χsf in the adjoint representation, nf flavors6 in the fundamental

representation, nsym flavors in the symmetric representation and nasym flavors in the anti-

symmetric representation. Then, the vanishing of the NSVZ β-function implies

0 =
3

2
· 2Nc −

1

2

(

nadj · 2Nc + 2nf · 1 + 2nsym · (Nc + 2) + 2nasym · (Nc − 2)

)

, (3.5)

which we can rearrange to yield

nf = (3 − nadj − nsym − nasym)Nc + 2(nasym − nsym) . (3.6)

Using this result, we can rewrite (c − a) in (3.2) as

c− a =
N2

c

16

(

1 − 1

3
(nadj + nsym + nasym)

)

+
Nc

16
(nasym − nsym) +

1

16

(

1 − 1

3
nadj

)

. (3.7)

Since c ∼ O(N2
c ), requiring that δ ≪ 1 as Nc → ∞ necessitates

nadj + nsym + nasym = 3 , (3.8)

which along with nf ≥ 0 further implies that

nasym − nsym ≥ 0 . (3.9)

It is easy now to enumerate all the models with G = SU(Nc) and δ ≪ 1 as Nc → ∞,

as shown in the following table.

(nadj, nasym, nsym, nf ) c − a δ

(a) (3,0,0,0) 0 0

(b) (2,1,0,1) 3Nc+1
48

1
4Nc

+ O(N−2
c )

(c) (1,2,0,2) 3Nc+1
24

1
2Nc

+ O(N−2
c )

(d) (1,1,1,0) 1
24

1
6N2

c
+ O(N−4

c )

(e) (0,3,0,3) 3Nc+1
16

3
4Nc

+ O(N−2
c )

(f) (0,2,1,1) Nc+1
16

1
4Nc

+ O(N−2
c )

Notice that model (a) has a matter content corresponding to N = 4 susy (and as a

result δ(a) = 0). Similarly, models (c) and (d) have a matter content corresponding to

N = 2 susy. In principle, the five models (b) through (f) are described by a gravity dual

with the effective action (2.3). Further, we note that δ > 0 for each of these models and so

they would seem to give violations of the KSS bound (1.1). However, the gauge coupling

is marginal in all of these models and so we would have to make sure there is a regime

in which δ gives the dominant correction to the ratio of the shear-viscosity-to-entropy-

density (2.13). As discussed at the end of section 2, if we imagine that the gravity dual

comes from a string theory construction, this should be possible for models (b, c, e, f) with

δ ∼ 1/Nc if the inequality (2.27) is satisfied. However, for model (d) with δ ∼ 1/N2
c , we

should note that the R4 interactions are also expected to contribute (positive) corrections

at O(λ1/2/N2
c ). The latter would always dominate since λ ≫ 1 is also required for a

sensible derivative expansion. However, the four superconformal gauge theories (b, c, e, f)

potentially have string theory duals which would produce violations of the KSS bound.

6Recall that for a chiral representation, one flavor is the sum of two conjugate representations.
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3.1.2 SO(2Nc + 1) and SO(2Nc)

The analysis proceeds precisely as before. As well as nadj χsf in the adjoint (or antisym-

metric) representation, we consider nv χsf in the vector representation and nsym χsf in

the symmetric representation. For general (nadj, nsym, nv), subject to vanishing β-function,

we find as Nc → ∞
δ =

1

2

3 − nadj − nsym

9 − nadj − nsym
+ O(N−1

c ) , (3.10)

which is supplemented with the condition

nv ≥ 0 , =⇒ 3 − nadj − nsym ≥ 0 . (3.11)

This suggests that while δ ≥ 0, the only model with a controllable gravitational dual is

the one with δ = 0 and the N = 4 susy matter content since when nadj + nsym = 3, the

condition nv ≥ 0 also requires that nsym = 0.

3.1.3 Sp(Nc)

The analysis is the same as before. Besides nadj χsf in the adjoint (symmetric) repre-

sentation, we consider nf χsf in the fundamental representation and nasym χsf in the

antisymmetric representation.

It is straightforward to establish that δ ≥ 0 always as Nc → ∞ and to enumerate all

the models with δ ≪ 1:

(nadj, nasym, nf ) c − a δ

(a) (3,0,0) 0 0

(b) (2,1,4) 6Nc−1
48

1
4Nc

+ O(N−2
c )

(c) (1,2,8) 6Nc−1
24

1
2Nc

+ O(N−2
c )

(d) (0,3,12) 6Nc−1
16

3
4Nc

+ O(N−2
c )

Notice that model (a) has a matter content corresponding to N = 4 susy (and as a

result δ(a) = 0). Model (c) is that originally identified by Kats and Petrov [24] and has

a matter content corresponding to N = 2 susy. Models (b) and (d) provide interesting

new candidates for a controllable gravity dual which again yield violations of the KSS

bound (1.1).

3.2 Isolated superconformal fixed points

There are several ways to engineer an isolated superconformal fixed point. In a purely field

theoretical construction, we can define an asymptotically free gauge theory in the UV, which

flows to a strongly coupled interactive conformal fixed point in the IR [49, 50]. These models

have N = 1 supersymmetry. Alternatively, one can engineer isolated superconformal fixed

points arising from the large number of D3-branes at singularities in F-theory [51–55].

The latter have N = 2 supersymmetry. All these theories have non-classical assignment

of R-charges of the anomaly-free global U(1)R symmetry for matter fields, which implies

O(1) anomalous dimensions of chiral superfields — of course, this is simply a reflection

of the strong coupling at the isolated superconformal fixed point. Unlike the examples
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of superconformal fixed points with exactly marginal coupling discussed above, in the

models which we review here with N = 1 supersymmetry, δ is always positive but it is

not suppressed by inverse powers of Nc in the large Nc limit. Therefore these theories will

not have a controllable gravity dual and cannot be proven with the approach considered

here to give counterexamples to the KSS bound.7 On the other hand, the models of [42]

engineered directly in string theory can violate the KSS bound (1.1).

3.2.1 Conformal window for N = 1 SU(Nc) gauge theory

Consider N = 1 SU(Nc) gauge theory with nf flavors in the fundamental representation.

As shown in [49], for 3
2Nc < nf < 3Nc the theory flows to a nontrivial superconformal

fixed point in the IR. The matter fields global anomaly-free U(1)R charge assignment is as

follows [49]:

ri = 1 − Nc

nf
, (3.12)

which from (3.2) implies

c − a =
N2

c + 1

16
, δ =

n2
f

7n2
f − 9N2

c

+ O
(

N−2
c , n−2

f

)

. (3.13)

The work of [45] expands on these results by adding adjoint matter fields and studying the

effect of various superpotential terms. In these theories, they again find that δ is always

positive but also order one in the limit of large Nc.

3.2.2 Conformal window for N = 1 SO(Nc) gauge theory

Consider N = 1 SO(Nc) gauge theory with nf flavors in the vector representation. As

shown in [49], for 3
2(Nc−2) < nf < 3(Nc−2) the theory flows to a nontrivial superconformal

fixed point in the IR. The matter fields global anomaly-free U(1)R charge assignment is as

follows [49]:

ri = 1 − Nc − 2

nf
, (3.14)

which from (3.2) implies

c − a =
Nc(Nc − 3)

32
, δ =

n2
f

7n2
f − 9N2

c

+ O
(

N−1
c

)

. (3.15)

3.2.3 Conformal window for N = 1 Sp(Nc) gauge theory

Consider N = 1 Sp(Nc) gauge theory with 2nf flavors in the fundamental representation.

As shown in [50], for 3
2(Nc + 1) < nf < 3(Nc + 1) the theory flows to a nontrivial su-

perconformal fixed point in the IR. The matter fields global anomaly-free U(1)R charge

assignment is as follows [50]:

ri = 1 − Nc + 1

nf
, (3.16)

7Besides models listed below, we have considered Kutasov-Schwimmer model [56] and there again we

find δ > 0 but δ ∼ 1.
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which from (3.2) implies

c − a =
Nc(2Nc + 3)

16
, δ =

n2
f

7n2
f − 9N2

c

+ O
(

N−1
c

)

. (3.17)

3.2.4 N = 2 superconformal fixed points from F-theory

Models constructed as Nc D3-branes probing an F-theory singularity generated by a col-

lection of n7 coincident (p, q) 7-branes and resulting in a constant dilaton were classified

in [42]. Classifying the F-theory singularity with the symmetry group G, one finds [42]

G H0 H1 H2 D4 E6 E7 E8

n7 2 3 4 6 8 9 10

We emphasize that the F-theory analysis fully accounts for the back-reaction of the n7

7-branes, which generate a deficit angle π n7/6 in the internal geometry. Central charges

of the dual four-dimensional N = 2 superconformal gauge theories were also computed [42]

and as Nc → ∞, one has

c − a =
1

4

(

n7

12 − n7

)

Nc −
1

24
, δ =

n7

12

1

Nc
+ O(N−2

c ) . (3.18)

Notice then that with large but finite Nc, each of the models tabulated above yields δ > 0

and δ ≪ 1 . Hence they all have a controllable gravity dual and (2.13) yields a violation of

the KSS bound (1.1). The string coupling remains arbitrary in the D4 model and so this

actually corresponds to a superconformal gauge theory with an exactly marginal operator.

Of course, this is precisely the case that was examined by Kats and Petrov [24].8

4 The strongly coupled quark-gluon plasma?

Our analysis in section 2 demonstrates that the thermal properties of a large class of

conformal gauge theories can be derived from a simple holographic framework. Of course,

one is tempted to consider how these results might be applied to understand the strongly

coupled quark-gluon plasma, which is currently under study with experiments at RHIC

and soon at the LHC. In this direction, we would like to generalize a phenomenological

approach originally advocated in [20]. The essential first step is to assume that the QCD

plasma is described by an effective conformal field theory. Given this assumption, this

effective CFT will have a holographic dual according to the AdS/CFT correspondence and

if nature is gracious, the dual theory may be one for which we calculate. That is, the

holographic dual may be approximated by the five-dimensional Einstein gravity coupled to

a negative cosmological constant, with controllable higher curvature corrections.

In this case, we can ask if the sQGP is described by an effective CFT within the

class of theories whose dual is governed the low energy action (2.3). We can then treat the

parameters characterizing the CFT, i.e., the central charges a and c, or equivalently the dual

8In the present F-theory description, the O7-plane is resolved as a combination of a (-1,-1) and a (1,-3)

7-brane.
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gravitational parameters ℓP/L and α3, as phenomenological. That is, we can calculate the

properties of the gauge theory plasma from the gravity dual and then compare the results to

experimental observations of QCD to fix the effective parameters. One interesting property

for such a comparison would be η/s, as given in (2.13). As discussed in [20], if we denote

the energy density of the conformal plasma and of the corresponding free theory as ε and

ε0, then the ratio ε/ε0 provides another interesting quantity for comparison, as the ratio

can also be determined by lattice QCD calculations. Hence our next step is to determine

ε/ε0 holographically with the effective action (2.3).

Working to first order in α3 or ℓ2
P
/L2, the equilibrium state of CFT plasma is encoded

in the AdS5-Schwarzschild background geometry [24]

ds2
T =

r2

L2

(

−f(r)dt2 + d~x2
)

+
L2

r2

dr2

f(r)
, (4.1)

where

f(r) = 1 − r4
0

r4
+

2

3
α3 + 2α3

r8
0

r8
. (4.2)

The horizon appears at

rH = r0

(

1 − 2

3
α3

)

, (4.3)

and the plasma temperature corresponds to the Hawking temperature which is given by

T =
r0

πL2

(

1 − 7

3
α3

)

. (4.4)

Note that in order to obtain the temperature, we have to rescale the time coordinate to

ensure that the speed of light in the CFT is unity. Next we evaluate the black hole entropy

for the solution (4.1) following the standard approach of [57] for gravity actions with higher

curvature corrections. The general expression takes the form

S = −2π

∮

δL
δRabcd

ε̂abε̂cd ε̄ . (4.5)

Of course, in the present case with a planar horizon, the horizon area diverges and so we

calculate the entropy density. Dividing by the coordinate volume, the final result can be

expressed as

s =
S

VCFT

= 2π
L3

ℓ3
P

(rH

L2

)3
[

1 + 4L2 α3 Rtr
tr

]

r=rH
= 2π

L3

ℓ3
P

(rH

L2

)3
(1 + 8 α3) . (4.6)

Note here that since the curvature above is multiplied by α3, we can evaluate it on the

leading order solution, i.e., Rtr
tr

∣

∣

r=r0
= 2/L2. To express this result in terms of CFT

parameters, we use the relations (2.11) as well as our expressions above for the horizon

radius (4.3) and temperature (4.4). Combining all of these, we arrive at the final result

s ≃ 2π2c T 3

(

1 +
5

4

c − a

c

)

. (4.7)
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We would like to compare this result for the entropy density which is implicitly cal-

culated for strong coupling to the entropy density of the free field limit. To produce a

quantitative result, it turns out that we must assume that the underlying CFT is super-

symmetric. We begin by noting that the central charges may be written as [27]:

a =
124 N1 + 11 N1/2 + 2 N0

720
, (4.8)

c =
12 N1 + 3 N1/2 + N0

120
,

where N1, N1/2 and N0 denote the number of vectors, (chiral) fermions and scalars, respec-

tively. While these expressions assume that these are all massless free fields, the results

are protected in a supersymmetric theory and so also apply at finite coupling in that case.

In a supersymmetric theory, we have an equal number of bosonic and fermionic degrees of

freedom, which we denote as N = 2N1 + N0 = 2N1/2, and therefore the entropy density is

naturally proportional to N . Hence we find the linear combination9

(2c − a) =
2(2N1 + N0) + 5N1/2

144
=

1

32
N . (4.9)

Now assuming we have a collection of free fields, the entropy density is easily calculated to

be [58]

s0 =
π2

12
NT 3 =

8π2

3
c T 3

(

1 +
c − a

c

)

. (4.10)

Hence comparing with (4.7), the ratio becomes

s

s0
=

3

4

(

1 +
1

4

c − a

c

)

. (4.11)

Note that we recover the celebrated result s/s0 = 3/4 with c = a [58], in which case the

gravity dual reduces to Einstein gravity (coupled to a negative cosmological constant).

Further, however, the sign of the correction to the ratio here is the opposite to that for

the ratio of shear viscosity to entropy density (2.13). Of course for a conformal (or free)

field theory, the energy density and entropy density are simply related as ε = 4
3sT . Hence

the result in (4.11) applies equally well for the ratio of the energy densities of the strongly

coupled and free theories.

Collecting our results then, all of the CFT’s for which (2.3) represents the gravity dual

will have the following:

ε

ε0
=

3

4

(

1 +
1

4
δ

)

and
η

s
=

1

4π
(1 − δ) , (4.12)

where δ ≡ c − a

c
. (4.13)

In principle, the CFT’s in the class of interest here have two independent parameters, a

and c, but above we have chosen two quantities which only depend on the combination

9The same result follows from adding together the two expressions in (3.2) and evaluating the result

with all ri = 2/3.
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δ. Thus we may treat δ as a phenomenological parameter under the assumption that the

effective CFT describing the QCD plasma lies within this class. This assumption is then

put to the test if both ε/ε0 and η/s can be constrained by observation and consistently

fit with the same value of δ. We can begin by using lattice QCD results to fix δ with the

energy density. Recent studies seem to indicate that energy density should be in the range

ε/ε0 ≈ 0.85 − 0.90 [59]. In this case, (4.12) yields δ ≈ 0.53 − 0.80 and hence

η

s

∣

∣

∣

QCD

≈ 0.016 − 0.037 . (4.14)

These ‘corrected’ values for η/s are significantly lower than the leading result, i.e., the

conjectured KSS bound η/s|
KSS

= 1/4π ≃ 0.08 [7]. Even though the ‘correction’ to ε/ε0 is

small, our fit produced a range of large values for the parameter δ. In fact, these values are

all too large since consistency of the effective CFT demands that |δ| < .5 [31]. Hence we can

conclude that the class of holographic models considered here cannot describe an effective

CFT for the QCD plasma and we must broaden the universality class under consideration.

When considering higher order corrections, it is natural to take into account higher

curvature terms in the effective gravity theory beyond the curvature-squared term appear-

ing in (2.3). Naturally the next term to consider would involve a contraction of three

Riemann tensors. The corresponding coupling constant would be dual to a new CFT pa-

rameter in the three point function of the stress tensor. However, one can argue that this

parameter, and hence the dual gravitational coupling, vanishes for any supersymmetric

CFT [31]. Since supersymmetry was an underlying assumption in the analysis above, it is

natural then to set the R3 term to zero.

As already discussed in section 2, string theory provides a specific interaction quartic

in curvatures [41]. As considered there, in situations where the string coupling is a free

parameter, this term does not necessarily enter the action suppressed by ℓ6
P/L6. Hence

the contributions of this R4 term can be enhanced in certain regimes of the parameter

space. For example in N = 4 super-Yang-Mills, the correction to η/s is 15ζ(3)/λ3/2 [19]

and if we evaluate this contribution with λ = 6π, as might be applicable for the QCD

plasma, it could easily compete with 1/Nc contributions (with Nc = 3 as in QCD). With

this observation, we argue that it is not unreasonable to include the corrections from both

the R2 and R4 terms as making independent and comparable contributions to the CFT

properties, i.e.,

ε

ε0
=

3

4

(

1 +
1

8
∆ +

1

4
δ

)

and
η

s
=

1

4π
(1 + ∆ − δ) , (4.15)

where ∆ encodes the R4 corrections [20]. Within the context of the phenomenological

program advocated above, we have expanded the class of CFT’s which might describe the

sQGP and so now have greater freedom in fitting the observed values of these quantities.

In order to arrive at a constrained or predictive system, we have to calculate more physical

properties of the QCD plasma. This does not present a real obstacle for the holographic

framework since the effective gravity action allows us to calculate the corrections for any

properties having to do with the stress-energy tensor. So in particular, we can calculate
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corrections to the higher order transport coefficients [60] and with these we may be able

to produce a constrained set of observables.

5 Discussion

We examined the effective low-energy description of the gauge/gravity duality, relevant

for discussing thermal and hydrodynamic properties of strongly coupled conformal gauge

theory plasmas. We argued that as long as the central charges of the CFT satisfy

c ∼ a ≫ 1 and |c − a|/c ≪ 1 , (5.1)

the dual gravity description should be described with Einstein gravity coupled to a negative

cosmological constant with perturbative corrections coming from a curvature-squared in-

teraction. The standard results for the holographic conformal anomaly [28–30] precisely fix

the relevant gravitational couplings in terms of the central charges. Our arguments assumed

the validity of the effective field theory description in gravity dual, i.e., a reasonable deriva-

tive expansion and generic couplings for any matter fields. These assumptions may only be

satisfied in a particular regime in theories with exactly marginal operators. In appendix B,

we use type IIb string theory, more specifically type IIb supergravity plus probe Dp-branes

(including leading ℓ2
s corrections) to establish that under certain conditions, holographic

dualities can indeed be cast in the framework of the proposed low-energy description.

A primary motivation of our work was to examine the claim by Kats and Petrov [24]

that the KSS bound (1.1) is violated in a certain string theory model. Our detailed analysis

agrees that their calculations are in fact reliable and the bound is violated in the regime

where λ ≫ N
2/3
c , as they already noted. It is interesting that this restriction establishes

the CFT coupling cannot be arbitrarily small if the KSS bound is to be violated. This is

in keeping with the intuition that bound must not be violated at weak coupling because

the viscosity grows arbitrarily large in the perturbative regime. This restriction can also

be translated into a limit on how small the string coupling can be if the bound is violated

in this string theory model, i.e., gs ≫ N
−1/3
c .

Often one also restricts the string coupling gs ≪ 1 to be in a perturbative regime

where the microscopic details of the duality can be well understood, e.g., in our schematic

discussion in appendix B. However, one important observation in section 2 is that these

microscopic details are inessential to the low energy gravity action (2.3). Rather we can use

the central charges to precisely fix the gravitational couplings with (2.11). Hence, as long

as we can evaluate the central charges from the CFT and they satisfy the inequalities (5.1),

we can reliably calculate the leading order corrections in δ with the effective action (2.3),

irrespective of the string coupling. Hence the result (2.13) for η/s is still dependable for

the F-theory models of [42] where the string coupling is fixed to be order one. As discussed

in section 3, in the limit of large Nc, these models provide new examples where the KSS

bound is violated.

In section 3, we also found various new superconformal gauge theories with 0 < δ ∼
1/Nc (as well as c ≫ 1) in the limit of large Nc. Even though no string theory model has

(yet) been constructed which is dual to these gauge theories, by the arguments of section 2,
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these CFT’s will have a controllable gravity dual described by the action (2.3). Hence we

can be confident that they also represent new examples where the KSS bound is violated. A

caveat in these cases is that the gauge coupling is precisely marginal and so we expect that

the bound will only be violated in the regime of large ’t Hooft coupling. One’s experience

with the universal contributions of the R4 interaction arising in string theory [20] suggests

that we must require λ ≫ N
2/3
c , as discussed for the example of [24]. In section 3, we

also found one example where 0 < δ ∼ 1/N2
c but we argued that the theory respects the

KSS bound (in the large Nc limit) since λ cannot be tuned to a regime of where the R2

contribution dominates.

A general feature that we found for all of the superconformal gauge theories analyzed

in section 3 was that δ is positive. While we focussed there on cases with δ ≪ 1, all of

our examples of N = 1 theories which flowed to a nontrivial superconformal fixed point

had δ was positive but δ ∼ 1 for Nc large — the same result applies for the examples

in [45]. This feature is also the generic behaviour of the superconformal theories with an

exactly marginal gauge coupling. For example, if we do not insist that |δ| ≪ 1, then we

see that (3.7) still always yields c − a > 0 for large Nc because of the constraint that

Nf > 0 combined with (3.6). However, this generic case yields c − a ∼ N2
c and so δ ∼ 1.

Although the gravity dual for such a CFT may be weakly curved, it would seem not to have

a controlled derivative expansion. Therefore while we have found that δ > 0 is generically

positive for superconformal gauge theories, the implications of this observation remain

unclear. Further, we should add that δ < 0 can be achieved with a theory of free vector

multiplets with N = 0, 1, 2 supersymmetry [31, 32]. Of course, since these examples are

free theories, they will not have a weakly curved gravity dual.

Our present discussion is limited to considering |δ| ≪ 1 and so any of our counter-

examples to the KSS bound only produce small violations of the bound. However, this was

simply a technical limitation arising since we need |δ| ≪ 1 to reliably formulate the gravity

dual using the techniques of effective field theory. One might imagine that violations

of the KSS bound still arise when δ ∼ 1, which as described above is the generic case,

and further that these violations may become arbitrarily large in this case. However, on

general grounds [8], one expects that η/s must remain finite and order one (in units where

~ = 1 = c = kB). Hence it is interesting then that basic considerations of three-point

functions in any four-dimensional supersymmetric CFT seem to restrict δ ≤ 1/2 [31].

Further precisely the same bound was found by demanding causality in a holographic

framework where the gravity dual incorporated the Gauss-Bonnet term as the curvature-

squared interaction [23]. Taken at face value, the latter calculations suggest that the

violations of the KSS bound are limited with η/s ≥ 16/100π for the superconformal gauge

theories. However, firmly establishing a clear lower bound for η/s remains an open question.

In section 4, we advocated a phenomenological approach to applying the AdS/CFT

correspondence to understanding the strongly coupled quark-gluon plasma of QCD. As-

suming the sQGP is described by an effective conformal field theory the latter should be

characterized by a few parameters controlling the aggregate properties of the plasma. With

the AdS/CFT correspondence, these parameters would then fix the couplings of the dual

gravity theory, e.g., as in (2.11). These parameters could then be fixed by comparing the
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results determined by holographic calculations with those emerging from analysis of ex-

perimental data, as well as lattice calculations. By taking into account sufficiently many

quantities, the comparison is constrained and one can concretely test the assumption that

the QCD plasma is described by a CFT within the universality class defined by a certain

family of gravity duals. With the gravity dual, we are restricting our attention to the

properties of the CFT probed by the stress tensor, however, the holographic framework

allows us to calculate any quantities originating with this operator. Hence, in principle,

there is no problem in expanding the calculations to a sufficiently broad set of quantities

so that the suggested comparison becomes constrained. At present, the obstruction to

this phenomenological program is that the experimental data does not yet yield precision

results for most quantities of interest.

Implicit in this discussion is also the assumption that the effective CFT describing the

sQGP is close to Einstein gravity. That is, the gravity dual is Einstein gravity coupled to a

negative cosmological constant with perturbative corrections coming from a limited number

of higher curvature interactions. Again, this is simply a technical issue as our present

understanding limits our holographic calculations to producing reliable results within this

framework. The primary motivation to believe that nature could be so kind as to respect

these limitations was that the value for the shear viscosity emerging from the RHIC data [6]

is unusually small and even seems to be roughly 1/4π, the universal result for Einstein

gravity duals [8–17]. The present discussion may call this motivation into question. Above

we found that the value of η/s can become smaller than 1/4π but suggested that it will

not become too much smaller even if we go well beyond the regime where corrections

to Einstein gravity can be treated perturbatively. Further, having realized that the KSS

bound can be violated, we observe that if (4.15) is representative then η/s = 1/4π only

defines a codimension-one surface in the space of possible CFT’s and so even if this precise

value is found for the sQGP, it is not clear how close the effective CFT will be to having

an Einstein gravity dual.
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A Comments on field redefinitions

As remarked in section 2, in general, the full CFT will have a spectrum of interesting

operators, each of which will be dual to an independent field in the gravity theory. These
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fields will appear in interactions at all orders in the derivative expansion and it is interesting

to examine how field redefinitions can modify the higher derivative terms for such fields.

For simplicity, we begin our discussion here by adding a single scalar field to the gravity

dual. However, we will comment on the case of multiple scalars and other generalizations

below. The most general four-derivative action for gravity coupled to a scalar field φ (as

well as a negative cosmological constant) is:

I =
1

2ℓ3
P

∫

d5x
√−g [U (φ) + R −K(φ)∇φ · ∇φ (A.1)

+A1 (φ) R2 + A2 (φ) RabR
ab + A3 (φ) RabcdR

abcd

+B1 (φ) ∇φ · ∇φR + B2 (φ) φR + B3 (φ)∇aφ∇bφRab + B4 (φ)∇a∇bφRab

+C1 (φ) (∇φ · ∇φ)2 + C2 (φ) ( φ)2 + C3 (φ)∇φ · ∇φ φ + C4 (φ) 2φ

+C5 (φ)∇aφ∇a φ + C6 (φ)∇a∇bφ∇a∇bφ + C7 (φ)∇a∇bφ∇aφ∇bφ
]

.

In general, one might have expected an additional function V(φ) to be multiplying the

Einstein term, but implicitly we have eliminated such a coupling with a conformal trans-

formation: gab → V(φ)−2/3gab. As in section 2, we have adopted the convention that φ has

zero engineering dimension and we are also assuming that the various coefficient functions,

e.g., Ai, Bi and Ci, are nonsingular at φ = 0. Many of the four-derivative terms above can

be eliminated by simply integrating by parts. For example,

∫

d5x
√−g C7 (φ)∇a∇bφ∇aφ∇bφ (A.2)

= −1

2

∫

d5x
√−g

(

C′
7 (φ) (∇φ · ∇φ)2 + C7 (φ)∇φ · ∇φ φ

)

,

where C′
7 ≡ δC7/δφ. In this way, one can eliminate B4, C4, C5, C6 and C7. Hence the general

four-derivative action can be reduced to

I =
1

2ℓ3
P

∫

d5x
√−g [U (φ) + R −K(φ)∇φ · ∇φ (A.3)

+A1 (φ) R2 + A2 (φ) RabR
ab + A3 (φ) RabcdR

abcd

+B1 (φ) ∇φ · ∇φR + B2 (φ) φR + B3 (φ)∇aφ∇bφRab

+C1 (φ) (∇φ · ∇φ)2 + C2 (φ) ( φ)2 + C3 (φ)∇φ · ∇φ φ
]

.

Now consider making field redefinitions: gab → gab + δgab and φ → φ + δφ. The most

general field redefinition involving two-derivative contributions can be written

δgab = M1 Rab + M2 ∇a∇bφ + M3 ∇aφ∇bφ (A.4)

+ (M4R + M5 φ + M6 ∇φ · ∇φ + M7) gab ,

δφ = N1R + N2 φ + N3 ∇φ · ∇φ .

In these expressions, all of the Mi and Ni are understood to be functions of φ which are

nonsingular at φ = 0 and they are of order ℓ2
P
. With these field redefinitions, the leading
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change in the action is

δI =
1

2ℓ3
P

∫

d5x
√−g

{[

1

2
(U(φ) + R −K(φ)∇φ · ∇φ) gab − Rab + K(φ)∇aφ∇bφ

]

δgab

+

(

U ′(φ) − 2K(φ) φ −K′(φ)∇φ · ∇φ

)

δφ

}

(A.5)

=
1

2ℓ3
P

∫

d5x
√−g

1

2

{

5M7 U + ((M1 + 5M4)U + M7) R

+
(

(M3 + 5M6)U + 3M7K− [(M2 + 5M5)U ]′
)

(∇φ)2

+ (M1 + 3M4) R2 −M1 RabR
ab + (M2 + 3M5 − 4N1K) φR

+ (M3 + 3M6 + (M1 + 3M4)K) (∇φ)2R − 2 (M2 −M1K)∇aφ∇bφRab

+
(

[M2K]′ − (M3 − 3M6)K − 2N3K′
)

(∇φ · ∇φ)2 − 4N2K ( φ)2

+
(

(2M2 + 3M5 − 4N3)K − 2N2K′
)

(∇φ)2 φ

}

, (A.6)

where as above, the prime indicates a derivative with respect to φ. Note that we have

integrated by parts to produce the expressions in (A.6). Now given this result is should be

clear that we have more than enough freedom to eliminate all of the four-derivative scalar

terms in (A.3), i.e., we can set to zero the coefficients A1,2, B1,2,3 and C1,2,3. While we do

not present the precise choices needed to produce these cancellations, we note the various

couplings in (A.3) can be eliminated by fixing in turn various coefficients appearing in the

field redefinitions (A.4), as follows: (A1,M4), (A2,M1), (B1,M3), (B2,N1), (B3,M2),

(C1,N3), (C2,N2), (C3,M5). This leaves M6 and M7 undetermined. We can use the

freedom in M7 to prevent any scalar couplings appearing in the Einstein term after the

field redefinition and to keep the Planck scale fixed. Hence the field redefinitions (A.4), as

well as integrating by parts, allow us to simplify the general action (A.1) down to

I =
1

2ℓ3
P

∫

d5x
√−g

[

U (φ) + R −K(φ)∇φ · ∇φ + A3 (φ) RabcdR
abcd
]

. (A.7)

Given this result, it is clear that none of the higher order terms involving derivatives of the

scalar can be relevant in calculating quantities such as the shear viscosity.

Unfortunately, it turns out that field redefinitions are not as effective in eliminating

four-derivative interactions when the effective theory involves many scalars φk. In this

case, the coefficients of each of the scalar field interactions in (A.1) become “tensors” with

indices to describe the various independent interactions involving different combinations of

scalars. Hence the general four-derivative action for gravity coupled to a set of scalar fields
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φk becomes:

I =
1

2ℓ3
P

∫

d5x
√−g

[

U (φm) + R −Kij(φ
m)∇φi · ∇φj (A.8)

+A1 (φm) R2 + A2 (φm) RabR
ab + A3 (φm) RabcdR

abcd

+B1ij (φm) ∇φi · ∇φj R + B2i (φm) φi R + B3ij (φm)∇aφi∇bφj Rab

+B4i (φm)∇a∇bφi Rab + C1ijkl (φm)∇φi · ∇φj ∇φk · ∇φl + C2ij (φm) φi φj

+C3ijk (φm)∇φi · ∇φj φk + C4i (φm) 2φi + C5ij (φm)∇aφ
i ∇a φj

+C6ij (φm)∇a∇bφ
i ∇a∇bφj + C7ijk (φm)∇a∇bφ

i ∇aφj∇bφk
]

.

Again, many of the four-derivative terms can be eliminated by simply integrating by parts.

However, there is one complication in considering C7ijk. The natural extension of (A.2)

now comes from considering the following total derivative:

∇a

(

C7(ij)k (φm)∇φi · ∇φj ∇aφk
)

= 2 C7(ij)k (φm)∇a∇bφ
i ∇bφj ∇aφk (A.9)

+ C7(ij)k (φm)∇φi · ∇φj φk + ∂lC7(ij)k (φm)∇φi · ∇φj ∇φk · ∇φl .

Above, the parentheses on the subscripts indicate symmetrization of the indices, i.e.,

C7(ij)k = 1
2 (C7ijk + C7jik). In general then, the coefficients C7ijk do not have to be symmet-

ric in the indices i and j but because of the form of the tensor in the total derivative (A.9),

integrating by parts can only eliminate the symmetric combination C7(ij)k. Hence the nat-

ural generalization of (A.3) is slightly more involved in the case of multiple scalars. First

we must add indices as appropriate in the interactions appearing there but we must also

include an extra term proportional to C7[ij]k = 1
2 (C7ijk − C7jik).

Next we wish to consider the field redefinitions generalizing those in (A.4), i.e., gab →
gab + δgab and φi → φi + δφi with

δgab = M1 Rab + M2i ∇a∇bφ
i + M3ij ∇aφ

i ∇bφ
j (A.10)

+
(

M4R + M5i φi + M6ij∇φi · ∇φj + M7

)

gab ,

δφi = N i
1R + N i

2j φj + N i
3jk ∇φj · ∇φk .

With these field redefinitions, we can consider the leading change in the action but this

exercise is rather tedious and so we give only a schematic description of the results. In

certain cases, the previous discussion follows through unchanged. For example above, we

canceled B1 by fixing the coefficient M3. Here this pairing becomes (B1(ij),M3(ij)). The

structure of the corresponding terms is such that both of these expressions are symmetric

in their subscripts, as indicated by the parentheses. Hence the index or tensor properties

match nicely in this particular case and it is clear that there are precisely enough degrees of

freedom in M3(ij) to eliminate B1(ij). However, in a number of cases, there is a mismatch for

the tensor expressions. For example, the pairing (C3,M5) becomes with multiple scalars,

(C3(ij)k,M5i). Hence in this case, it is clear that in general with more than one scalar field,

there are not enough degrees of freedom in the field redefinition M5i to eliminate all of

the possible couplings C3(ij)k. Our final result is that we still have the freedom to set to
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zero the couplings, A1, A2, B1(ij), B2i and C2(ij), but we can only partially eliminate B3(ij),

C1(ij)(kl) and C3(ij)k. Further as described above, a new set of couplings arise from C7[ij]k.

Of course, in any given theory, it may be that the full set of general couplings does not

appear, e.g., there might be internal symmetries which restrict the number and form of the

independent couplings.

Hence after making the O(ℓ2
P) field redefinitions (A.10), the general four-derivative

action (A.8) can be simplified to take the form

I =
1

2ℓ3
P

∫

d5x
√−g

[

U (φm) + R −Kij(φ
k)∇φi · ∇φj + A3 (φm) RabcdR

abcd

+B3(ij) (φm)∇aφi ∇bφj Rab + C1(ij)(kl) (φm)∇φi · ∇φj ∇φk · ∇φl

+C3(ij)k (φm)∇φi · ∇φj φk + C7[ij]k (φm)∇a∇bφ
i ∇bφj ∇aφk

]

. (A.11)

At this point, an important observation is that the higher order interactions in the second

and third line of this action contain at least two factors with derivatives of the scalars.

Hence, since we are treating these terms perturbatively, if the scalars are constant in the

leading solution, they will remain constant at the next order. Certainly, the scalars are

constant in the leading order background of an AdS5 black hole (4.1) and so the scalars

will not effect the thermodynamic properties of dual CFT (at least at this order in the

expansion in (c − a)/c). That is, these new coefficients define new parameters of the CFT

which characterize certain correlators of the new operators (dual to the scalars) and the

stress tensor. However, the properties of the thermal stress tensor are independent of these

parameters at this order.

This discussion can be further extended to include vectors in the gravity theory. While

a complete discussion requires an even more elaborate analysis, it is relatively straightfor-

ward to show that any new four-derivative interactions are at least quadratic in the field

strengths of the gauge fields, with one exception. Hence an argument similar to that above

applies here as well, with the conclusion that these terms will not effect the CFT’s thermal

properties, at this order. The one exception to these statements is as follows: In five di-

mensions with a U(1) gauge field, we can introduce an interaction:
∫

A ∧ Ra
b ∧ Rb

a. This

term plays an interesting role in describing the anomaly for the U(1)R current [36, 37] —

see also [38] for recent supergravity analysis of this term. Since this interaction is linear in

the gauge potential, it will induce a nontrivial profile in a background where Ra
b ∧ Rb

a is

nonvanishing. However, this combination of curvatures vanishes both for the AdS5 vacuum

and an AdS5 black hole background. Hence we can conclude again that this term will play

no role in determining the thermal properties of the CFT.

B String theory origin of R2

In the string theory example considered by Kats and Petrov [24] and more generally in the

F-theory constructions of [42], the curvature-squared interaction is argued to arise from the

world-volume action of the D7-branes [37, 42]. In this appendix, we would like to develop a

schematic understanding of the parameter dependence of the coupling coefficients in these
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higher derivative interactions. In particular, we contrast these couplings with the analogous

coefficients in the celebrated R4 interaction [41] that arises from the closed string sector.

Hence we are able to confirm the conditions (2.27) under which the R2 corrections coming

from the branes dominate over the bulk corrections arising the R4 interaction. Along the

way we will motivate the usage of the R2 terms in eq. (2.15). We must note though that

the final results rely on treating the Dp-branes as probe branes and so the discussion has

more limited applicability than the effective action approach in section 2. Schematically

we can write

S = κ1

∫

d10x
√−g(R−F 2

5 +α′3R4 + · · · )−κ2

∫

dp+1x(
√

G + F +α′2
√

GR2 + · · · ) . (B.1)

We are in Einstein frame. Terms arising at ℓ6
s in the bulk action are generically denoted by

R4. By R2 we mean a generic term arising at ℓ4
s order in the brane action. It is known from

scattering amplitude calculations off D-branes and O-planes [62] that these terms arise as

stringy corrections to the DBI action. Here

κ1 ∼ 1

g2
sℓ

8
s

, κ2 ∼ Nf

gsℓ
p+1
s

. (B.2)

κ1 is essentially the inverse of the ten-dimensional Newton’s constant while κ2 is related

to the tension of the Dp-brane. We will consider p > 3 so that we can get a 5d action by

wrapping the brane on some p − 4 cycle. So p = 5, 7, 9.

Now we know from the standard AdS/CFT dictionary that

ℓ2
s ∼ 1√

λ
, gs ∼

λ

Nc
, (B.3)

where for convenience we have set the AdS radius to unity. Thus when λ is large, the

six and higher derivative terms in the full brane action can be ignored compared to the

four-derivative terms. Then in terms of these variables

S ∼ N2
c

(∫

d10x
√−g

(

R−F 2
5 +

1

λ3/2
R4+· · ·

)

−Nf

∫

dp+1x
1

Ncλ(3−p)/4

√
G + F (B.4)

+
1

Ncλ(7−p)/4

√
GR2 + · · ·

)

.

Thus for p = 7, the first term in the DBI action leads to a correction to the effective

cosmological constant of O(λ/Nc) while the second term gives an R2 term with coefficient

O(1/Nc). In order to produce a 5d theory, we need to integrate the brane action over some

(p-4)-cycle. We have to ensure that the volume of this (p-4)-cycle satisfies Vp−4 ≫ ℓ3
s for

the derivative expansion to make sense. For general p, from the 5d point of view we have

S5 ∼N2
c V5

∫

d5x
√−g5

(

R5 − 2Λ +
1

λ3/2
R4

5 + · · · − Vp−4

V5

Nf

Nc
λ(p−3)/4

− Vp−4

V5

Nf

Nc
λ(p−7)/4R2

5 + · · ·
)

.

(B.5)
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In imposing various constraints, first we require

V5 ≫ 1

λ5/4
, Vp−4 ≫ 1

λ(p−4)/4
, λ ≫ 1 , . (B.6)

for the derivative expansion to be sensible. Next from the above action, we see that for

the R2 terms to produce the leading curvature corrections, we must have

1 ≫ Vp−4

V5

Nf

Nc
λ(p−7)/4 ≫ 1

λ3/2
, or λ(7−p)/4 ≫ Vp−4

V5

Nf

Nc
≫ λ(1−p)/4 . (B.7)

We also require that the brane tension does not produce a large modification to the cos-

mological constant (e.g., change the sign of Λ) which gives

λ(3−p)/4 ≫ Vp−4

V5

Nf

Nc
. (B.8)

The latter replaces the first inequality in (B.7) giving a more stringent constraint. The

second inequality in (B.7) yields

λ ≫
(

V5

Vp−4

Nc

Nf

)
4

p−1

=⇒ λ

Nc
≫
(

V5

Vp−4

1

Nf

)
4

p−1

N
5−p

p−1
c . (B.9)

If only string loop effects, unsuppressed by powers of ℓs, were present then these would

dominate if p ≤ 9. Thankfully, supersymmetry prevents string loop corrections to the

lowest order DBI terms and hence this situation does not arise [61].

Finally this formal analysis treats the back-reaction of the D-branes perturbatively

and so we must insist on weak string coupling, gs ≪ 1. Hence we require that

λ

Nc
≪ 1 (B.10)

Comparing to (B.9), we must then have p > 5. In other words, only for p = 7, 9 can the

R2 term be viewed sensibly as arising from a probe brane and dominating the ℓ6
s terms.

Further, however, the D9 brane case is not viable since the zero-temperature limit is not

supersymmetric. Thus it appears that we can only use D7-branes as sources for the R2

term in a perturbative setting. Typically there are also couplings of the type

Tp

∫

C ∧ eF ∧ [tr(RT ∧ RT ) − tr(RN ∧ RN )] , (B.11)

where N and T denote the normal and tangent bundles respectively. One might worry

that such couplings would change C and O(ℓ4
s) and hence feedback at the same order in

the Einstein equations. Fortunately for the case of interest this does not happen as can

be explicitly checked. The modification only occurs at O(ℓ8
s) which can be ignored. In

5d-language this translates into ignoring ℓ4
s modifications to Aµ.

The next important question to fix is the sign of the R2 term. Following the general

strategy discussed in section 2, we can construct a effective theory in five dimensions for

which the coefficient of the R2 correction is fixed by the trace anomaly of the gauge theory.

As in [30], flux terms arising at this order will be ignored. It is interesting then that
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scattering amplitudes in string theory from D-branes and O-planes seem to indicate that

the sign is positive [62].10
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